
Project of Software
Development

Lab 2 - 24Feb
Programming Exercise: OutSify

Lab topic

OutSystems Dynamic pages:

● Aggregates 101

● Building Screens with Data

● Modeling Data Relationships

● Data Model Integrity

Exercise:

● OutSify:

○ Finish the static version

○ Dynamic version

Bibliography:

● OutSystems online training:
https://www.outsystems.com/training/courses/125/logic/?LearningPathId=18

https://www.outsystems.com/training/courses/125/logic/?LearningPathId=18

PDSOFT S14 | Prof. Olivier Carneiro

OutSystems Online Training: Becoming a Reactive Web Developer

Short review and Q&A: Dynamic pages & exercise solution

Server-side

Client-side

OutSify - OutSystems Spotify (Dynamic version)

Website Architecture

Functional aspects: Create a Web Media Player

which imitates Spotify:

● Dynamic Homepage with playlists from

database

● Dynamic Detail screen to show and play the

playlist content, including some stats, from

database

Visual appearance: use the Design Guidelines

defined by Spotify

Technical constraints: 1 screen for the

Homepage and 1 screen for all details page

Dependencies: all lectures content and all

homeworks up to and including Lesson 7

Step 1 - Create the entities

● You will need to store the playlists and the
songs of each playlist in the database

● All information (name, author, album, link
to Spotify or youtube, etc.) must be in the
database

● All entities must be in the 3rd normal form
(Hoffer, chapter 4, “Introduction to
normalization, pages 176-185)

● All entities must have the keys defined
(primary and foreign)

Minimum requirements:

● Insert at least 7 playlists records and at
least 2 records of songs per playlist using
Service Studio’s “Data editor”

Step 2 - Create a new dynamic homepage

Display a dynamic list of playlists instead of the
hard-coded interface. No playlist information
(name, etc.) can be hard-coded

Use an icon for the playlist image.

Minimum requirements:

● Top-left logo
● 5 playlists from the database
● Page title
● After implementing the “playlist page”:

○ Highlight the last played playlist in the
“Top 6 playlists”

○ Menu option to reset the count of plays

Tip: In the gallery, insert a list

Step 2 - Create a new dynamic homepage (solution)

Think about the visual structure

(organization) of your page

The menu is on the left side, the content is on

the right side (blue)

The playlists are displayed in 3 areas equally

sized (yellow)

● Use the Gallery widget to show a dynamic

list of items and allow users to

sequentially browse content

In the gallery, insert a list

Fetch all the playlists (don’t forget to
sort them) from the database using
an aggregate

In the list:

● Set source = the aggregate
● Recreate the style of the static

playlist items but with the
dynamic content from the
aggregate (instructions here
on the right)

Test it on your smartphone
too!

Step 2 - Create a new dynamic homepage (solution)

Option 1: Option 2: Option 3:

Type: Binary Data

Image Content:

- Database attribute

with the cover’s

image

Widget: Expression

Value:

- Database

attribute with the

playlist name

Step 3 - Create a new dynamic playlist page

Display a dynamic list of the playlist’s songs from database

instead of the hard-coded interface. No song information

(name, author, album, link to Spotify or youtube, etc.) can be

hard-coded

Minimum requirements:

● Top-left logo

● Link to homepage on the menu

● Link to each song in the playlist (2 songs):

○ To Spotify, using the Spotify URI from Step 1

○ To Youtube, opening a new page to play the

videos

○ Page title including the playlist name

○ Same “Top 5 playlists” from Homepage

Step 3 - Create a new dynamic playlist page (solution)

1. Use the same structural elements as in the static
version: ColumnsSmallLeft (blue) and CardItem
(red).

2. For the CardItem content, set the images and the
playlist name as dynamic, using the attributes of a
new aggregate (same as we did for the playlist
element in the Homepage screen).

3. This aggregate must fetch the playlist details of
the playlist defined by the input variable.

4. Set the Title property of the Playlist Screen as
dynamic: "OutSify - featuring the playlist " + The
Name of the Playlist in the database

Step 3 - Create a new dynamic playlist page (solution)

1. Use the same structural elements as in the static
version: ColumnsSmallLeft (blue) and CardItem
(red).

2. For the CardItem content, set the images and the
playlist name as dynamic, using the attributes of a
new aggregate (same as we did for the playlist
element in the Homepage screen). This aggregate
must fetch the playlist details of the playlist
defined by the input variable.

3. Set the Title property of the Playlist Screen as
dynamic: "OutSify - featuring the playlist " + The
Name of the Playlist in the database

Type: Binary Data

Image Content:

- Database attribute

with the cover’s

image

Widget: Expression

Value:

- Database

attribute with the

playlist name

Fetch the songs in the playlist

(don’t forget to filter and sort the

playlist) from the database using

an aggregate

In the “Table”:

● Set source = the aggregate

● Add 3 columns:
○ Order with width=1 col

○ Song name with width=8

col

○ Duration with width=3 col

Step 3 - Create a new dynamic playlist page (solution)

Option 1: Option 2: Option 3:

Step 4 - Playlist counter and other cool features

Playlists gallery:

● With a count of how many times each playlist
has been played

● Excluding the playlist being played

Tip:

1. Use the widget “Numbers\Badge” to display the
count. The default background of this widget is
white and the font colour of your App is white, so
the number will not be visible. Therefore, you
need to change the background using the
widget’s attribute “Color”

2. Create a “PlayCounter” attribute in the Playlist
entity to store the number of times each playlist
has been played. Where should it be
incremented?

Other optional cool features

Set the WebApp icon:

● Change the icon in Data/Resources/favicon.png

(right-button and “Change Resource”)

● Replace all occurrences of “favicon.png” with

“/<WebAppName>/favicon.png”

Imitate Spotify’s interface: show a play button when the

mouse is over the playlist (link hover) [Requires

knowledge of CSS]:

● Search for the Spotify Play Button (transparent

PNG, 50px) and add this image to your module

● Google for “css show image on hover” and

StackOverFlow
Spotify - Hover Play Button.mp4

http://drive.google.com/file/d/1QaaHaWlI91QHgSxRTSez2i5xJdgj2sg3/view

PDSOFT S14 | Prof. Olivier Carneiro

Learning goals

To understand how to create Dynamic Web pages in OutSystems

Creating a Web Application in OutSystems: Entities, fetching data, lists and

galleries

How to develop a Reactive WebApp with content that adapts to screen size

PDSOFT S14 | Prof. Olivier Carneiro

Homework: exercise

● Finish your OutSify (Dynamic) exercise:
○ Don’t forget to test on both your laptop and smartphone. The expected result shall be similar

to https://edulab02.outsystemsenterprise.com/OutSify/Homepage2
○ Add the “anonymous” role to all your Web Screens:

■ Click on the Web Screen (widget tree on the right side)

■ The attributes area will open. Click on “Anonymous”

■ Repeat (a) and (b) for each Web Screen you created

■ Publish and test

○ Submit the address of your Web Application by following up on the email

Expected total effort: 30 to 120 minutes

https://edulab02.outsystemsenterprise.com/OutSify/Homepage2

	Diapositivo 1: Project of Software Development
	Diapositivo 2: Lab topic
	Diapositivo 3
	Diapositivo 4: OutSify - OutSystems Spotify (Dynamic version)
	Diapositivo 5: Step 1 - Create the entities
	Diapositivo 6: Step 2 - Create a new dynamic homepage
	Diapositivo 7: Step 2 - Create a new dynamic homepage (solution)
	Diapositivo 8: Step 2 - Create a new dynamic homepage (solution)
	Diapositivo 9: Step 3 - Create a new dynamic playlist page
	Diapositivo 10: Step 3 - Create a new dynamic playlist page (solution)
	Diapositivo 11: Step 3 - Create a new dynamic playlist page (solution)
	Diapositivo 12: Step 3 - Create a new dynamic playlist page (solution)
	Diapositivo 13: Step 4 - Playlist counter and other cool features
	Diapositivo 14: Learning goals
	Diapositivo 15: Homework: exercise

